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Abstraet--H~perbolic heat conduction in an infinitely long cylindrical solid with internal heat generation 
produced by Joule effect is considered. The power generated per unit volume is non-uniform and steady- 
periodic. The surface of the cylinder is assumed to exchange heat by convection with an external fluid. The 
temperature tield within the cylinder is determined analytically in a steady-periodic regime. For a fixed 
material and for a fixed radius of the cylinder, the dependence of the amplitude of thermal waves on the 

frequency of the electric current is studied and it is proved that thermal resonances occur. 

INTRODUCTION 

It is well known that, in non-stationary heat con- 
duction problems, Fourier's law implies an infinite 
speed for the propagation of thermal signals. The 
hyperbolic heat conduction theory is based on a 
constitutive equation for the heat flux vector which 
coincides with Fourier's law for stationary problems, 
and which predicts a finite speed for the propagation 
of thermal signals for non-stationary problems. A 
clear and exhaustive review of this theory has been 
recently proposed by Ozisik and Tzou [1]. In the 
constitutive equation for the heat flux vector, which 
is proposed in hyperbolic heat conduction theory, a 
new physical quantity is introduced: the relaxation 
time z. As is widely explained in refs. [1, 2], the relax- 
ation time represents the time-lag between the tem- 
perature gradient and the resulting heat flux vector. 
Generally, such a time-lag can be neglected for slowly 
varying temperature fields, but becomes significant 
in non-stationary problems where local temperature 
variations take place in time intervals with durations 
comparable to z. ']'he relaxation time z is directly 
related to the propagation speed of thermal waves: 
the latter is given by the square root of the ratio 
s/z, where ~ is the l:hermal diffusivity of the material. 
According to the hyperbolic heat conduction theory, 
the relaxation time z is a thermodynamic property of 
the material. Howe ver, apart from experiments at very 
low temperatures ,~n liquid helium II [3], measure- 
ments of the relaxation time or of the propagation 
speed of thermal waves, especially at room or at elev- 
ated temperatures~ are very rare in the literature. 
Recently, measurements on non-homogeneous 
materials at about 20°C have been performed by Kam- 
inski [4]. The materials considered by Kaminski are 
H acid, NaHCO3, sand, glass ballotini and an ion 

exchanger. The experimental values of z determined 
in ref. [4] range from 10.9 s for glass ballotini to 
53.7 s for the ion exchanger. On the contrary, only 
theoretical guesses of the value of z for homogeneous 
solid materials at room or high temperatures are avail- 
able in the literature. For instance, it is usually 
retained that metals have values of z about 10 -t4- 
10-" s [1, 2]. Since rigorous tables of relaxation times 
or of thermal wave speeds for engineering materials 
are not yet available, exact solutions of the hyperbolic 
heat conduction equation can be very useful in the 
design of new experimental setups for measurements 
of thermal waves propagation. Many exact solutions 
of the hyperbolic heat conduction equation have been 
found in the literature (a wide list of references can be 
found in ref. [1]). In our opinion, one of the most 
interesting features of hyperbolic heat conduction is 
the resonance phenomenon which has been recognized 
in thermal wave propagation by Tzou [5, 6]. 

In refs. [5, 6], the hyperbolic heat conduction equa- 
tion is solved for an infinitely wide slab of solid 
material with an internal heat source. In particular, 
the author assumes that, within the slab, there exists 
a periodic and non-uniform power generated per unit 
volume such that its time-average is zero. Since the 
time-average of the power generated per unit volume 
is zero, heat is alternately generated and subtracted 
within the slab. The author prescribes either a zero 
wall heat flux [5] or a fixed temperature [6] on the two 
faces of the slab, and determines the amplitude of 
thermal waves in steady-periodic regime. In refs. [5, 
6], it is shown that there exist values of the frequency 
of the heat source which determine a resonant behav- 
iour of the thermal waves. However, the results 
reported in refs. [5, 6] do not seem to have a direct 
physical applicability, because the heat source con- 
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NOMENCLATURE 

B i  = h r o / k ,  Biot number 
E electric field [V m -  1] 
E axial component of E [V m -  ~] 
h convection heat transfer coefficient 

[W m-2 K l] 
H magnetic field [A m -1] 
i = x / ~ l ,  imaginary unit 
Im imaginary part of a complex number 
J, Bessel function of first kind and order 

n 
J electric current density [A m -2] 
k thermal conductivity [W m 1 K- l ]  
kl, k2 dimensionless constants introduced in 

equation (35) 
q heat flux vector [W m -z] 
qg power generated per unit volume 

[Wm 3] 
qg s o u r c e  term in the hyperbolic heat 

conduction equation [W m-3] 
qr radial component of the heat flux 

vector [W m 2] 
time-averaged power generated per 
unit length [W m -1] 

r radial coordinate [m] 
r0 radius of the cylinder [m] 
Re real part of a complex number 
s = ogt, dimensionless time 
t time [s] 
T temperature [K] 
Tf fluid temperature outside the 

boundary layer [K] 
Tw surface temperature [K] 
Tw time-averaged surface temperature [K] 

J = F /~  2, dimensionless parameter 
u function of q, F, A, f~ defined in 

equation (39) 
v function of q, F, A, f~ defined in 

equation (40) 
w Wronskian 
Yn Bessel function of second kind and 

order n 
= equal by definition 
rP f[ modulus of a complex number. 

Greek symbols 
:t thermal diffusivity [m 2 s 1] 
7 time independent part of E, defined in 

equation (6) [V m- ' ]  
F = co 3, dimensionless parameter 
e electric permittivity [F m-1] 
~l = r / ro ,  dimensionless radius 
r/', ~/" integration variables 

dimensionless temperature 
0, ~ ,  02 dimensionless functions defined in 

equation (22) 
® = A2/f22, dimensionless parameter 
A = (2~o/c 01/2r o, dimensionless 

parameter 
p magnetic permeability [V s A -1 m -1] 
cr electric conductivity [A V -I  m -I] 
z relaxation time in the constitutive 

equation (10) [s] 
= Oql +ioq2, dimensionless function 

~o angular frequency [rad s-1] 
~r~ = (O),tto')l/2t'0, dimensionless 

parameter. 

sidered in the analysis can hardly be reproduced exper- 
imentally. 

The aim of this paper is to determine analytically 
the steady-periodic temperature field which solves the 
hyperbolic heat conduction equation for an infinitely 
long cylindrical solid carrying an alternating electric 
field with a given frequency. The external surface of 
the cylinder will be supposed to exchange heat by 
convection with a surrounding fluid. It will be shown 
that a resonance phenomenon for thermal waves 
occurs in this system. 

Indeed, the presence of an alternating electric field 
within the cylinder determines, on account of Ohm's 
law, an alternating electric current and a consequent 
heat generation by Joule effect. Let us recall that, 
when the current is alternating, the power generated 
per unit volume by Joule effect is not uniformly dis- 
tributed because of the s k i n  e f f e c t ,  which can be 
described as follows. As the frequency of the electric 
current increases, the electric current density within 
the solid tends to assume significant values only in 
the neighbourhood of the external surface (skin) and 

tends to be negligible in the interior [7, 8]. As a conse- 
quence, the power generated per unit volume by Joule 
effect has a non-uniform distribution. 

In the literature, many papers deal with Fourier's 
(i.e. parabolic) heat conduction within a solid crossed 
by an alternating current [9-16]. However, no such 
study in the framework of hyperbolic heat conduction 
theory is yet available. 

MATHEMATICAL MODEL 

In this section, the evaluation of the steady-periodic 
power per unit volume generated by Joule effect within 
an infinitery long cylindrical solid crossed by an alter- 
nating electric current, presented in ref. [14], is 
outlined. Then, the hyperbolic heat conduction equa- 
tion for the problem under examination is presented. 

Let us consider an infinitely long cylindrical solid 
with radius r0. It will be assumed that the thermal 
and electric properties of  the solid are independent of 
temperature, so that they can be treated as constants. 
A parallel electric field E, which depends only on r 
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and t and is directed axially, is present within the 
solid. This field depends periodically on time, with an 
angular frequency o~. The macroscopic charge density 
distribution in the solid is zero. It will be assumed that  
the angular  frequency co of  the electric field oscil- 
lations satisfies the condit ion oge << a, so that  the elec- 
tric displacement current can be neglected. This 
assumption is called quasi-stationary approximation of 
the electromagnetic field equations [7] and is satisfied 
even at  very high frequencies. In fact, for a material  
with a = 10 7 A V -I m -~ and e = 10 - u  F m -( ,  the 
condit ion me << a holds i fm << 1018 rad s -L  

In the quasi-stat ionary approximation,  Maxwell 's  
equations can be written as [7] 

dH v × E  = - ~ -  (l) 

V x H = J (2) 

V. U = 0 (3) 

V" E = 0. (4) 

Moreover,  Ohm's  law is supposed to hold, i.e. 

J = erE. (5) 

In ref. [14], it is proved that  the axial component  of 
E can be expressed as 

E(r, t) = 7(r) e -io'  (6) 

where function 7(r) is given by 

v(r) = [ ~ O  ]lJ2]0(,,/inn) (7) 
txn~f(n) 3 

andf ( t~ )  is defined as 

f(D) - f l  IIJ°("/~t)ll2ndq (8) 

In equations (7) and (8), the dimensionless par-  
ameter f~ = (o)/~a)~/2r o and the dimensionless radial  
coordinate  q = r/ro have been employed. The power 
per unit  volume generated within the solid by Joule 
effect is q, = Re ( J .  E) [171, so that  equations (5)-(8) 
yield 

0 
q,(r, t) = 2",tr~ f (n)  [llJo(,,/[ f~q)II 2 

+ Re (]0 (w/~ nq)  2) cos (2rot) 

+ Im(J0 (x/~ Dr/) 2) sin (2cot)]. (9) 

On account of equation (9), it is easily proved that  
qg(r, t) oscillates with twice the frequency of  the elec- 
tric field oscillations and with an ampli tude equal to 
its mean value. 

In hyperbolic heat conduction, the heat flux vector 
q does not  obey Fourier ' s  law, q = - k V T ,  but the 
constitutive equation [1] 

Oa 
q+ z ~t = - k V T .  (10) 

The local energy balance can be expressed as 

kOT  
-V 'q+qg( r , t )  - . (11) 

~3t 

By employing equations (10) and (11), it is easily 
proved that  the temperature field must  obey the hyper- 
bolic heat conduction equation [1] 

kV2T+Etg(r,t) = k [ S T + z 8 2 T l  (12) 
L c~t Ot 2 J 

where the source term qg(r, t) is given by 

0qg (r, t) 
#g(r, t) = qg(r,t)+z dt (13) 

As a consequence of equations (9) and (13), the 
source term qs(r, t) can be expressed as 

qg(r, t) - 0 {llJ0(x/~f~O)ll2 
2nr~f(D) 

+ [Re(Jo (x//i fir/) 2) + 2~oz Im(Jo (v/ i  f~t/)2)] cos (2¢ot) 

+ [Im(Jo (x/ i  f~t/) 2) - 2¢oz Re(Jo (x/~ Dr/) 2)] sin (2cot)}. 

(14) 

DIMENSIONLESS FORM OF THE HYPERBOLIC 
HEAT CONDUCTION EQUATION 

In this section, the hyperbolic heat conduct ion 
equation is written in a dimensionless form. Then, 
under the hypothesis that  the heat conduct ion is 
steady-periodic, this equation is t ransformed into a 
system of three ordinary differential equations. 

Let convection be present at the surface of  the 
cylinder with an external fluid which has temperature 
Tf outside the boundary  layer. Then, the boundary 
condit ion at  r = ro can be expressed as 

qr(ro, t) = h[Tw(t)- Tr] (15) 

so that, on account of  equation (10), the temperature 
field at r = r0 must fulfil the condit ion 

- k  8T = hITw(t)+z ~ -  Tfl. (16)  
8r r=ro 

The time-averaged power generated within the 
cylinder per unit  length, Q, is related to ~ by 

Q = 2 n r o h ( ~ -  Tr). (17) 

On account of equation (17), if a dimensionless 
temperature 

T -  Tr 
0 = _ (18) 

T w -  Tf 

is defined and the dimensionless variables t /and s = o~t 
are introduced together with the Biot number  
Bi = hro/k, then equation (12) can be rewritten as 
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1 O // 0'9\ _.2nro 2 ~ a)ro 2 [-0,9 02'9 -] 
4~r/~q)+ll'-~ -qg =--I=-+eJz~-5--:/'~ kes as ] (19) r/ 

By employing equation (14), the dimensionless par- 
ameter F = coz and the non-negative dimensionless 
parameter A such that A2/2 = oor~/e, equation (19) 
can be rewritten as 

1 ~ / 0'9\  Bi 

+ [Re(J0 (,,/i OU) 2) + 2F Im(J0 (x/i at/):)] cos (2s) 

+ [Im(J0 (x/~ ~)U) a) _ 2F Re(J0 (x/~ f~U) :)] sin (2s) } 

A: /0 '9  F d2'9~ = + V )  (20) 

On account of equation (18) and of the definition 
of Bi, equation (16) yields 

ff~q ~=, +Bi O(1,s)+F = O. (21) 

As a consequence of equations (20) and (21), '9 is a 
function of q and s which depends parametrically on 
Bi, F, A and O. After a sufficiently long time, the heat 
conduction becomes steady-periodic and the solution 
of equations (20) and (21) has the form 

'9(r/, s) = ~(r/) +'9, (U) cos (2s) + 02 (U) sin (2s). (22) 

While ~ represents the average of '9 with respect to 
s in the interval [0, ~], '9~ and ~2 have the following 
physical meaning. The complex valued function 

- '9~ +i'92 is such that its modulus and its argument 
represent, respectively, the amplitude and the phase 
of the oscillations of '9 around its mean value ~. 

By substituting equation (22) into equation (20), 
one obtains 

1 d d ~  Bi  • 2 

1 d d'9, B i  • 2 
+ {~ ~ (r/~--U ) + f ~  [Re(Jo (x//i~r/)) 

+ 2F Im(Jo (x/~ f~r/)2)] _ A 2'92 

+ 2AZVO' }c°s(2s)+ {~ ~--q [~r/ (t-q)d'92' 

Bi /:. 2 
+ f ~  [Im(Jo (,,/i Or/) ) -- 2F Re(J0 (,,//i ~r/) 2)] 

+A2'91 +2A2F'gz} sin (2s) = 0. (23) 

The integration with respect to s of both sides of 
equation (23) in the interval [0, ~] yields 

(d,) 1 d U~r/ + IIJ0(v/iOu)/I 2 = 0. (24) 
r/dr/ f ~  

The multiplication by cos (2s) of both sides of equa- 

tion (23) and the integration with respect to s in the 
interval [0, n] yields 

1 d [" d O ~ \  Bi 
q d~ ~r/~-q ) +  f ~ )  [Re(J° (~Ou)2)  

+2rIm(J0x~Oq)2)]-A2'92+2A2F'91 = 0. (25) 

The multiplication by sin (2s) of both sides of equa- 
tion (23) and the integration with respect to s in the 
interval [0, n] yields 

1 d [ d02"~ Bi  . ; 
~[q~-q)+ f ~  [Im(Jo(x/~f~U) ) 

- 2 F R e ( J 0 ( , ~ O U ) 2 ) ] + A : ' 9 , + 2 A : F ' 9 :  = 0. (26) 

Therefore, the dimensionless Fourier equation has 
been transformed into a system of three coupled 
differential equations in the variable U, namely equa- 
tions (24)-(26). Moreover, by substituting equation 
(22) into equation (21), one obtains 

d2 ~=, + Bi~(1)+ ~d-~ L~I 
dr] ( o u  ~=1 

+Bi['9~ (1) + 2F~92 (1)]t cos (2s) 

+ ~d'92 (1)]} sin (2s) = 0. dr~ 7=, + Bi['92(1)-2F~9, (27) 

By employing the same method which has allowed 
us to split equation (23) into equations (24)-(26), 
equation (27) can be transformed into the following 
set of equations : 

~ = ,  = (28) + Bi,9(1) 0 

d'9~du 7=, +Bi['91(1)+2F'92(l)] = 0 (29) 

d'92 +Bi['92(1)-2r'9, (l)] = 0. (30) 
dr/ 7=, 

Equations (24) and (28), which determine the time- 
averaged distribution of dimensionless temperature, 
are the same as those that one would obtain by 
employing Fourier's equation, instead of the hyper- 
bolic heat conduction equation. In other words, equa- 
tions (24) and (28) are not affected by the relaxation 
time ~, so that the time-averaged distribution of 
dimensionless temperature is the same for every value 
of ~. In ref. [14], an expression of the time-averaged 
distribution of dimensionless temperature ~ has been 
determined analytically in the case of Fourier's heat 
conduction, i.e. for ~ = 0, and is given by 

~(r/) = 1 +Big(u, f~) (31) 

where g(r/, f~) is defined as 
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g( ~, ~ )  
0.5 

0.4, 

0,3 

0,2 

0.1 

0 

~ ~ = 0  

- - ~ = 4  

f l=6 .  
~ = 8  
f~ 1 

0,2 0.4 0.6 0.8 

Fig. 1. Plots ofg(q, ~) vs q ~ r  various values of Q. 
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(32) 

Plots ofg(r/, f~) for various values of f~ are reported 
in Fig. 1. These plots show how function g(r/, fl) tends 
to become uniform as f~ increases. Indeed, in the limit 
~ + ~ ,  the time-averaged dimensionless tem- 
perature ~(r/) equals 1 for any value of r/. 

THERMAL WAVES 

In this section, equations (25) and (26) are solved 
analytically with the boundary conditions expressed 
by equations (29) arid (30). 

Equations (25) and (26) are coupled. However, if 
one employs the corrtplex valued function qJ, equations 
(25) and (26) collapse into a unique complex differ- 
ential equation, namely 

1 d (r/d-~kr/) + A2 (2F + i )~  
r/dr/ 

• Bi(2F +i) . . /:. ~ , : 
= 1 f ~  a0 tx/l~Lr/) 

(33) 

while equations (29) and (30) collapse into a unique 
boundary condition, namely 

d~ --iBi(2F+i)¢(1) = 0. (34) 
u q  q= 1 

By employing the method of variation of par- 
ameters presented in ref. [18] and the properties of 
Bessel functions [19], the general solution of the 
inhomogeneous difiq:rential equation (33) can be writ- 
ten in the form 

~0(r/) = k , J o ( ~ A r / )  +k2 Y o ( ~ A r / )  

• B i  (2F +i) Yo( 2x/2(~ Ar/) 
+ l f - ~  

.[] Jo( 2,,/iV~ Ar/ ' ) . ,  r ~ ,,2 
X w ~  "t° (~/1 ~Lr/) dr/' 

B i  
- i f - - ~  (2F + i ) J o ( ~ A r / )  

I~ Yo( 2, /SF~Ar/ ' ) . ,  r .~ ,2 
X Jo(~/1 xLr/') dr/'. (35) 

d o  

The Wronskian w(r/), which appears in equation 
(35) is given by 

w(r/) ---- J o ( 2 ~ A r / )  d Y ° ( 2 x / ~ A q )  
dr/ 

_ yo(~/2V+iAr/)dJo(, ,  Ar/) ~ .2F/2F~ = :2 (36) 
dr/ ~r/ 

where the identity [19] 

Jo (x) d ~Ox( dJo (x) _ 2 (37) 
X)  Y o ( X )  d x  7zx 

has been employed. 
On account of equation (35), function ~ is regular 

at r /=  0 if and only if k2 = 0. In this case, equation 
(35) can be rewritten as 

2F " . B i  . q~(r/) = klJo(2x/~Ar/)  + l f - ~  (2r+ 1) 

[ Y o ( 2 w / 2 - F ~ i l h r / ) u ( r / ,  F, A,~)) 

-- J0 ( 2w/2F +iAr/)v(r/, F, A, f~)] (38) 
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where functions u(t/. F. A. D) and v(q. F. A. D) are 
defined as follows : 

u(q. F. A. D) 

- ; f ]  Jo (x /2F+iAq ' ) Jo (x / iD , ' )2 t / ' dq '  (39) 

v(t/, F, A, ~) 

n f l  Yo(x/2F +iAt/')Jo(,/iOt/')2t/" dt/'. (40) -=5 

On account of the properties of Bessel functions, 
the substitution of equation (38) into equation (34) 
yields 

Bi 
k, = i f - ~ ( 2 r + i ) { v ( 1 , r , A , D ) - u ( 1 , V , A , Q )  

x [Bi2,,/2F~I 110 ( x / ~  + i At/) - iA Y1 ( 2 x / 2 ~  At/)] 

x [Bi 2x/2F~l Jo (x/2F + i  At/) 

- i A J ,  (2x/2-F~ At/)]-~}. (41) 

Equations (38)-(41) determine both the modulus 
and the argument of 0, i.e. the amplitude and the 
phase of the oscillations of oa around its mean value 

THE ONSET OF THERMAL RESONANCES 

In this section, equations (38)-(41) are employed 
to analyse how the amplitude of the dimensionless 
temperature oscillations at the surface of the cylinder 
depends on the dimensionless parameters fl and F/D 2. 

Plots of the modulus of ~, as a function of fl, for 

t /=  1 and Bi = 0.1 are reported in Figs. 2-6. Since 
both F and A depend on the angular frequency e), in 
Figs. 2-6 a prescribed value is assigned to the dimen- 
sionless parameters 

F z A 2 2 
.9- -- D 2 liar ~ and O = ~ = ~ .  (42) 

In Fig. 2, the modulus of 0, i.e. the amplitude of 
the dimensionless temperature oscillations is plotted 
for J = 0 and ® = 100. This plot represents the 
behaviour of the amplitude in the limit of Fourier's 
heat conduction, i.e. for z = 0. In particular, Fig. 2 
shows that the amplitude of the temperature oscil- 
lations is a decreasing function of Q and becomes 
practically negligible for D > 0.2. The effects of a finite 
relaxation time z are illustrated in Figs. 3-6. These 
figures correspond to O = 100 and 3- equal to l03, 
104, l05 and 106, respectively. 

Figures 3-6 show that, unlike Fourier's heat con- 
duction, hyperbolic heat conduction produces thermal 
resonances which become more and more significant 
as materials with increasing relaxation times are con- 
sidered. In Figs. 2-6, it is shown that, for t /=  l, the 
modulus of ~ tends to 1 when D ~ 0. Therefore, on 
account of equations (31) and (32), when D--* 0 the 
amplitude of the dimensionless temperature oscil- 
lations at t /=  1 becomes equal to the time-averaged 
value of the dimensionless temperature. As D 
increases, the amplitude has a behaviour which stron- 
gly depends on ~--. 

In Fig. 3, the amplitude of the dimensionless tem- 
perature oscillations initially decreases with f/, but 
for f~ > 0.092 the amplitude begins to increase and 
reaches a maximum for ~ ~ 0.104; this value of 
determines the first resonance. A second resonance 
occurs for f~ = 0.136. 

In Fig. 4, the amplitude initially increases with 

I1 ,11 

0.8 r / =  1 

Bi = 0.1 

0.a ~ O=100 

0.4 = 

0.2 

0 0.05 0.1 0.15 0.2 0.25 

Fig. 2. Plot of the amplitude ]l~ll as a function of D for Y = 0. 

f~ 
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I1 11 

~ r/= 1 
0.8 

Bi= 0.1 

0.6 ~ O = 1 0 0  

0.4 

0.2 

i 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 

Fig. 3. Plot of the amplitude Lqffll as a function of Q for ~- = 103. 

f~ 

ll ll 
1.2 

1 ~ 

0.8 

0.6 

0.4 

0.2 

0 ~ 

r/=l 

100 \ A 
c ' i f=  10 4 ~ 

i , i i I , = I , i * i i i i i i i * i 

0.02 0.04 0.06 0.08 

Fig. 4. Plot of the amplitude II~'LI as a function of~ for Y = l04. 

f2 

and reaches a maximum for f2 ~ 0.038. Other res- 
onances occur for ~) ~ 0.062, Q ~ 0.078, etc. 

In Fig. 5, the araplitude initially increases with Q 
and reaches a maximum for fl ~ 0.023. A second res- 
onance occurs for fl ~ 0.035. 

In Fig. 6, the amplitude initially increases with Q 
and reaches a maximum for f~ ~ 0.013. Other res- 
onances occur for f~ ~ 0.020, f~ =~ 0.025, ~ ~ 0.029, 

~ 0.033, f~ ~_ 0.036, f~ ~ 0.039, etc. 

CONCLUSIONS 

The hyperbolic heat conduction equation for a cyl- 
indrical solid with an internal heat generation due to 
an alternating current has been considered. The power 

generated per unit volume within the cylinder is non- 
uniform as a consequence of the skin effect. The equa- 
tion has been written in a dimensionless form and has 
been solved analytically in a steady-periodic regime. It 
has been shown that the time-averaged dimensionless 
temperature distribution is independent of the value 
of the relaxation time z, so that it coincides with the 
distribution obtained in ref. [14] according to Fou- 
rier's heat conduction, i.e. for z = 0. An analytical 
expression for the amplitude and the phase of thermal 
waves has been obtained. This expression has been 
employed to obtain plots of the amplitude of thermal 
waves at the surface of the cylinder as a function of 
the dimensionless parameter Q = (eg#a)l/2r0, for fixed 
values of the Biot number and of the dimensionless 
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If /ll 
3.5 

3 

2.5 

2 

1.5 

1 

0.5 

0 
0 

/7=1 f Bi = 0.1 
O = 100 [ 

/ c/" 105 ~ ~ 

, , , , t , , , , i , , , , i , , , , i 

0.01 0.02 0.03 0.04 

Fig. 5. Plot of the amplitude ]J~kl[ as a function off]  for J -  = 105. 

f~ 

I1 /11 

10 

0 i 

0 

I r/=l 
Bi =0.1 

II O= 100 

t i i t i , , i t i i i f 
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Fig. 6. Plot of the amplitude Jd$[I as a function off~ for 3- = 10  6. 

parameters J = z/(#ar 2) and ® = 2/(a#a). It has 
been shown that the most important  difference 
between the results obtained for Fourier 's  heat con- 
duction (i.e. for 3-  = 0) and those obtained for hyper- 
bolic heat conduction is the following: hyperbolic 
heat conduction determines the appearance of  res- 
onance phenomena. More  precisely, for J -  equal to 
1 0  3 , 1 0  4 , 1 0  5 and 1 0  6 , local maxima of  the amplitude 
of  the dimensionless temperature oscillations as a 
function of  f~ are observed, for fixed values of  Bi and 
O. Moreover,  for fixed Bi and O, the values of  f~ 
which correspond to these maxima depend on ~-', and 
the values of  the amplitude which correspond to these 

maxima strongly increase for increasing values of  J .  
The significant dependence of  the temperature dis- 
tribution on the value of  the relaxation time and the 
onset of  thermal resonances suggest the possibility 
that the exact solution obtained in this paper may 
be employed as a parameter estimation method for 
experimental measurements of  the relaxation time. 
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